Lower Bounds for the Quadratic Assignment Problem
نویسنده
چکیده
We investigate the classical Gilmore-Lawler lower bound for the quadratic assignment problem. We provide evidence of the difficulty of improving the Gilmore-Lawler Bound and develop new bounds by means of optimal reduction schemes. Computational results are reported indicating that the new lower bounds have advantages over previous bounds and can be used in a branch-and-bound type algorithm for the quadratic assignment problem.
منابع مشابه
Robust Quadratic Assignment Problem with Uncertain Locations
We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...
متن کاملLower bounds for the Quadratic Semi-Assignment Problem
In this paper we will present class of new lower bounds for the Quadratic Semi-Assignment Problem (QSAP). These bounds are based on recent results about polynomially solvable cases, in particular we will consider the QSAP's whose quadratic cost coefficients define a reducible graph. Several lower bounds will be computationally compared, moreover we will present a method which improves these bou...
متن کاملA New Lower Bound Via Projection for the Quadratic Assignment Problem
New lower bounds for the quadratic assignment problem QAP are presented. These bounds are based on the orthogonal relaxation of QAP. The additional improvement is obtained by making eecient use of a tractable representation of orthogonal matrices having constant row and column sums. The new bound is easy to implement and often provides high quality bounds under an acceptable computational eeort.
متن کاملThe Use of Special Graphs for Obtaining Lower Bounds in the Geometric Quadratic Assignment Problem
In this paper we define a class of edge-weighted graphs having nonnegatively valued bisections. We show experimentally that complete such graphs with more than three vertices and also some special graphs with only positive edges can be applied to improve the existing lower bounds for a version of the quadratic assignment problem, namely with a matrix composed of rectilinear distances between po...
متن کاملComputing Lower Bounds for the Quadratic Assignment Problem with an Interior Point Algorithm for Linear Programming
A typical example of the quadratic assignment problem (QAP) is the facility location problem, in which a set of n facilities are to be assigned, at minimum cost, to an equal number of locations. Between each pair of facilities, there is a given amount of flow, contributing a cost equal to the product of the flow and the distance between locations to which the facilities are assigned. Proving op...
متن کامل